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Paolo Ferragina and Giorgio Vinciguerra

Abstract Very recently, the unexpected combination of data structures and machine
learning has led to the development of a new area of research, called learned data
structures. Their distinguishing trait is the ability to reveal and exploit patterns and
trends in the input data for achieving more efficiency in time and space, compared
to previously known data structures. The goal of this chapter is to provide the
first comprehensive survey of these results and to stimulate further research in this
promising area.

1 Introduction

The searching problem is among the oldest and most prominent problems in com-
puter science, well-studied and ubiquitous in research and applications. Not surpris-
ingly, it is often used as an introductory topic in basic algorithms courses, paving
the way to the study of fundamental data structures such as arrays, lists, search trees,
tries and hash tables.

Simply stated, the searching problem asks to preprocess a set of items into a data
structure in such a way that certain kinds of queries on these items can subsequently
be answered quickly. Clearly, there are many different facets and solutions to this
problem, depending on how the data are organised in memory and which opera-
tions are supported, but the above basic data structures are often sufficient to solve
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sophisticated versions of the problem, be them a search of neighbouring points of
interest in a map or a search for all documents relevant to a query in a search engine.
As an example, a data structure for this last application, called inverted list, consists
of a hash table or a trie mapping each possible query term to a list or an array of
document-IDs containing that term.

We refer to this first family as traditional data structures, which also includes
variations (stacks, queues, heaps, circular lists, . . . ) and combinations (multiway
trees, spatial data structures, randomised lists, . . . ) of the most known ones. In these
data structures, the main goal pursued by researchers and software engineers was
to achieve efficient/optimal query time and space as a function of the number of
items [6].

Since the ‘90s, with the flood of big data and the advent of hierarchical memories
in computers, researchers aimed at designing compact data structures, sometimes
called succinct, compressed or opportunistic data structures. These data structures
exploit the repetitiveness present in the input data to occupy a space close to the
information-theoretic lower bound and still provide efficient query operations. This
means that they do not require that data is fully decompressed to perform searches
over them. Today, it is known how to turn almost any traditional data structure into
a compact data structure [27].

In general, both families of traditional and compact data structures offer a wide
range of trade-offs, and no single solution is satisfactory for every application because
of differing hardware and software requirements or constraints imposed by user
needs. As a result, software engineers have often to choose (sometimes incautiously)
one among a multitude of data structures based on partial or superficial information
available when their choice is done, and then soon discover that their choice is
inefficient because it did not take into account some specialities of input data. This
situation is well captured by the following excerpt:

Another simple way to facilitate [. . .] retrieval is to let people do part of the work, by
providing them with suitable printed indexes to the information. This method is often the
most reasonable and economical way to proceed (provided, of course, that the old paper
is recycled whenever a new index is printed), especially because people tend to notice
interesting patterns when they have convenient access to masses of data.

— Donald Knuth, The Art of Computer Programming (1973).

Recently, researchers were able to define machine learning-based tools that au-
tomatically detect such patterns and, unexpectedly, orchestrated them with classic
data structures to design a new family of data structures, called learned data struc-
tures, that attempts exactly to reveal and exploit patterns and trends in the input data
for achieving more efficiency in time and space compared to the previously known
solutions. The key design idea consists of augmenting—and sometimes even replac-
ing—classic data-structural building blocks, such as tree nodes or hash tables, with
Machine Learning (ML) models which are better suitable to “notice interesting pat-
terns when they have convenient access to masses of data”. This feature, combined
with proper data structural design elements and algorithms has led to outstanding
improvements in space occupancy and time efficiency over a plethora of searching
problems, some of which will be introduced and discussed in the following sections.
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Table 1 A summary of machine-learned data structures for four main searching problems. CDF
stands for Cumulative Density Function of a probability distribution.
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A first overview of the problems and corresponding results achieved in this new
algorithmic field is offered in Table 1, where for each problem we summarise the
ML approach taken, its benefits and drawbacks, and we point out the main references
to the literature. We strictly limit ourselves to four main searching problems: exact
membership, range queries, approximate membership, and frequency estimation.
The set of problems which can be solved via ML-based approaches is growing—
just to mention a few, cardinality estimation of SQL queries via deep learning [19],
learned query optimisers [20], learned operating systems [38], learned sorting al-
gorithms [20], learned prefetchers [15]—but they are beyond the scope of this
chapter. Furthermore, while not strictly related to the content of this chapter, we
ought to mention the work of [18, 17] concerning the semi-automated (and possibly
ML-driven) design of data structures from their first design principles.

Notation and basic terminology. We denote by n the input size and use log to
denote the logarithm to the base 2. To analyse algorithms, we use both the Random
Access Machine (RAM) model and the external (or, two-level) memory model [33].
The RAMmodel consists of an infinite memory of O(log n) bit cells, and it supports
arithmetic, logical and bitwise operations on individual cells in constant time. The
time cost of an algorithm is evaluated by counting the asymptotic number of steps
it takes to solve a problem, while its space cost is the maximal number of memory
cells (sometimes expressed in bits) it occupies during the computation. On the other
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hand, the external memory model abstracts the memory hierarchy by modelling
just two levels: an internal memory of limited size M , and an external memory
of unlimited size divided into blocks of B consecutive items. Data is brought into
internal memory and written back to external memory by transferring one block at
a time. The efficiency of an algorithm is then evaluated by counting the asymptotic
number of transfers, or I/Os, it makes for solving a given problem.

2 Learned data structures for range queries

Structuring data to provide fast retrieval by individual keys or range of keys is a
problem as old as computer science, arguably the most successful example of the
interplay between data structures and machine learning.

The indexable dictionary problem asks to store amultiset S of keys drawn from
a universe U in order to efficiently support the following query and update
operations:

• member(x) = true if x ∈ S, false otherwise;
• lookup(x) returns the satellite data of x ∈ S (if any), nil otherwise;
• predecessor(x) = max{y ∈ S | y < x};
• range(x, y) = S ∩ [x, y];
• insert(x) adds x to S, i.e. S = S ∪ {x};
• delete(x) removes x from S, i.e. S = S \ {x}.

A data structure implementing the above query and update operations is called
an index structure, or simply index. The B-tree and its variations are from the ‘70s
the predominant indexes for working in disk memories in commercial database
systems [29]. A B-tree is a search tree with fan-out Θ(B). A node r stores r .num =
Θ(B) keys r .keyi in ascending order and associated data r .datai (1 ≤ i ≤ r .num).
An internal node r stores also r .num + 1 pointers to its children r .child j (1 ≤ j ≤
r .num + 1). A query lookup(x) starts from the root being the current node. If this
node contains a key equal to x, then the search terminates successfully and returns
the data associated with x. Otherwise, if the node is a leaf, the search terminates
unsuccessfully and returns nil. In the other cases, the search recurses into the unique
children that may contain x. Since a node can be accessed in O(1) I/Os, the cost of a
search is proportional to the height of the tree, i.e. O(logB n) I/Os. Other pointwise
queries are slight modifications of the tree traversal we just described.

A variation of the B-tree, called B+-tree, stores instead the keys from S and any
associated data at the leaves, which are linked left-to-right for fast range queries.
Inner nodes contain copies of certain keys from S and act only as routing elements,
i.e. an inner node r contains keys r .keyi and pointers to children r .child j (1 ≤ i <
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j ≤ r .num+1) but not the data associated with keys, as shown in Figure 1. A lookup
in a B+-tree costs Θ(logB n) I/Os.

3 5

2 4 6 7

1* 2* 3* 4* 7* 8*6*5*

Fig. 1 A B+-tree with fan-out 3 stores all the keys x = 1, 2, . . . , 8 and associated data, denoted as
x∗, at the leaf level. Inner nodes store copies of certain keys and act as routing elements.

The work of Kraska et al. [21], which extended some previous original results of
Ao et al. [1], has provided us with a different perspective on this old-fashioned
problem. The key idea introduced by these authors is that indexes are models that
can be trained to map keys to their location in the sorted order, and this mapping
is enough to efficiently implement any pointwise and range query of the indexable
dictionary problem. In fact, let us denote by rank(x) the primitive that returns, for
any key x ∈ U, the number of keys in S which are smaller than x, and let A be the
array storing the keys of S in sorted order. Then, member(x) can be implemented
by checking whether A[rank(x)] = x or not; predecessor(x) consists of returning
A[rank(x)−1]; and range(x, y) consists of scanning the array A from position rank(x)
up to the first key larger than y.

This parallel between index structures and rank function does not seem a new
one, as indeed any B-tree offers an implementation of it. But its novelty becomes
clear when we look at the keys x ∈ S as points (x, rank(x)) in the Cartesian plane.
As an example, let us consider the case of a set of keys S = {2,4,6, . . . ,2n}. Here,
as depicted in Figure 2, the points (x, rank(x)) can be “covered” by the linear model
f (x) = 0.5x − 1 so that the function rank(x) can be computed exactly for each
key x ∈ S in constant time and space, independently of the number of keys in S.
Consequently, one should never build a B-tree on that set of keys!

This trivial example sheds light on the potential compression opportunities of-
fered by patterns and trends in the data distribution. However, we cannot argue that
all datasets follow exactly a linear trend, nor that the models can learn the data
distribution with no errors. Nevertheless, the idea is promising so that, to deal with
the general setting, we have to design techniques that:

• learn the rank function by extracting the patterns in the data through succinct
models, ranging from linear to more sophisticated ones;

• admit some “errors” in the output of the model approximating the rank function
and which, in turn, can be efficiently (in time and space) corrected to return the
exact value of rank.
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Fig. 2 A set of keys S =
{2, 4, 6, . . . , 2n} mapped
to points (x, rank(x)) in the
Cartesian plane, and the line
passing through (“covering”)
all of them.
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This is a supervised learning task inwhich the dataset D = {(x, rank(x))}x∈S is given,
and we look for a model f : U → [0,n)which maps keys of S to their positions in the
sorted order, and minimises the error | f (x) − rank(x)| over all x ∈ S.1 Equivalently,
we look for a model F : U → [0,1] which minimises |nF(x) − rank(x)| over all
x ∈ S. Intuitively, F(x) is the fraction of keys that are less than x, i.e. the learned
empirical Cumulative Distribution Function (CDF) of D. It is clear that f (x) or F(x)
alone are not sufficient to solve the searching problem for a key x in S because of
the errors present in the learned approximation provided by those functions. Hence,
proper algorithms and data structures have to be designed to orchestrate learned
models with classic building blocks that allow to correct these approximations and
provide correct answers to the searching for x.

A simple but illustrative example of such algorithmic corrections follows below.

Example: implementing rank with a linear regression model

Let us given an array A = [27,29,32,34,34,35,37,37,37,38,38,40,41] of 13 integer
(repeated) keys, and consider the corresponding set of points in the Cartesian plane
obtained by representing only the first occurrence of every key with its rank (but
dropping the other copies):

D = {(x, rank(x))}x∈A
= {(27,0), (29,1), (32,2), (34,3), (35,5), (37,6), (38,9), (40,11), (41,12)}.

The linear model f computed using ordinary least squares on D has slope 0.88
and intercept −25.23. As shown in Figure 3, if we use f to approximate the rank of
the key x = 34, we get r = d f (x)e = d4.69e = 5, but the true rank of x is 3. We can

1 We assume that universe U is a range of reals because of the arithmetic operations required by
the models. This works for any kind of keys that can be mapped to reals by preserving their order,
such as integers or strings.



Learned data structures 7

fix the error incurred by f via a linear search that starts from A[r] and stops when
the first occurrence of (a key less than or equal to) x is found.

Furthermore, instead of using a linear search, we can keep the maximum error
err incurred by f over the key in S, and use it at query time to perform a binary
search in A[r − err,r + err] in O(log err) time. Likewise, an exponential search (also
called doubling search or galloping search [4]) starting from A[r] could solve the
problem more efficiently in time O(log d), where d = |rank(x) − r | is the actual
distance between the estimated position and the correct position of x in A.

Finally, we notice that this approach based on linear models and algorithmic
correction can also be used to support unsuccessful searches for keys not in A with
the same time complexity. As an example, let us assume that we wish to search for
x = 33. We compute d f (x)e = d0.88 × 33 − 25.23e = d3.81e = 4 and then start an
exponential search towards the beginning of A (since A[4] = 34 > 33), which finds
that 33 does not occur in A.

Fig. 3 Real data rarely have
trivial trends like the one
in Figure 2. More often
there are missing keys (gaps
in the horizontal axis) and
repeated keys (points stacked
vertically). In such cases,
before replacing a learned
model with a traditional index
we must design a strategy to
fix the error of the model.
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In the following sections, we trace the logical development of more sophisticated
learned data structures. We look at different techniques to learn the function rank
for the keys in S, and present solutions to the challenges that arise when replacing
well-established algorithms and data structures with MLmodels in several searching
problems, starting from the classic range search.

2.1 The Recursive Model Index

The Recursive Model Index (RMI) [21] is a fixed hierarchy of regression models
organised in stages. At query time each model, starting from the one at the root,
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Fig. 4 RMI is a fixed hier-
archy of models organised in
stages. In this example, the
root model f1,1 routes the
input key x to the model f2,2
in the second stage, which
in turn routes x to the last-
stage model f3,3. The output
of f3,3 along with its errors
min j and max j is used to
limit the final search step to
A[pos − min j , pos + max j ].
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[pos − min3, pos + max3]

A

takes the searched key as input and picks the model in the lower stage responsible
for that key, i.e. the expert of a certain range of the training data where the key falls
into. The output of a model in the last stage is used as an approximate position of
the searched key in A, the sorted array of input keys.

If we imagine creating an edge from each model to the models it picks in the stage
below, then the resulting structure is a Direct Acyclic Graph (DAG) since different
models at one stage can pick the same model at the stage below, as pictured in
Figure 4.

The construction of RMI proceeds top-down by training the hierarchy of regres-
sion models. First, the root model f1,1 is trained on the entire dataset D. Second,
this model is used to distribute each pair (x, y) ∈ D to one of the p models in the
lower stage according to the map bp · f1,1(x)/nc, thus effectively partitioning D into
D1, . . . ,Dp . Third, the process is repeated recursively by training the jth model f2, j
on the dataset Dj for all j = 1, . . . , p. This way, keys are further partitioned in the
models on the lower stage, and the process repeats recursively for all ` stages (i.e.
the depth of the DAG). The time to build RMI, by assuming that the training time of
a model is linear in the size of the training set, is O(`n).

After the training, the worst over-prediction and under-prediction of every model
f ,̀ j in the last stage are evaluated (and stored) as

minj =
�� min
(x,y)∈D`, j

(y − f ,̀ j(x))
�� and maxj =

�� max
(x,y)∈D`, j

(y − f ,̀ j(x))
��. (1)

If one of the two errors exceeds a certain user-defined threshold, the corresponding
model is replaced by a B-tree. Otherwise, the errors are stored and used at query
time to limit the final binary-search step to A[pos − minj,pos + maxj], where pos is
the approximate position computed via the jth last-stage model.

An example of searching for a key x in RMI is shown in Figure 4. Note that RMI
has to be monotonic to ensure that the errors minj and maxj are guaranteed also for
the keys not in D.

The recursive model index is different from traditional tree-based indexes (such
as B-trees) for at least four main reasons:
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1. Its size is constant and is given by the overall number of parameters in the
hierarchy of models plus the two errors stored for each model in the last stage.
Conversely, the size of traditional indexes is linear in n.

2. It can take advantage of patterns and trends in the distribution of the input data.
Conversely, traditional indexes are general-purpose and do notmake assumptions
about the data distribution.

3. In-between stages there are no searches, as the output of a model is directly used
to pick the model of the next stage. Conversely, traditional indexes perform a
search to identify the next node to visit.

4. The error cannot be bounded/evaluated beforehand. Conversely, traditional in-
dexes allow specifying the node size (i.e. themaximumnumber of keys inspected
at each level) thus bounding in advance the worst-case performance.

On datasets of 200 million entries, a two-stage RMI2 always dominated an in-
memory implementation of a B+-tree, being up to 1.5–3× faster and up to two orders
of magnitude smaller.3

Among the shortcomings of RMI, wemention: (i) the lack of support for insertions
and deletions; (ii) the time-consuming tuning process, needed to shape the hierarchy
of models, and the subsequent training/construction time; (iii) the lack of latency
guarantees; (iv) the top-down training algorithm, which blindly distributes keys to
the models below ignoring their power or workload in terms of partition size.

2.2 Variations and extensions of RMI

After the introduction of RMI, subsequent research has focused mainly on its fixed
structure and the lack of support for insertions and deletions of keys. A common
denominator of the subsequent research efforts is “adaptability”, that is, getting rid
of the fixed hierarchical structure of RMI, which without a proper (time-consuming)
tuning can lead to redundant or overloaded models. Redundancy occurs when upper
stages of RMI distribute too few keys to a single model, thus failing to use its ap-
proximation potential at full scale. Overloading occurs when upper stages distribute
too many keys to a single model, which may not have the capability of fully capture
the data trend, thus causing high prediction errors and in turn high query times.

In the following, we present four learned indexes that address the problems
mentioned above.

2 Private correspondencewith the authors clarified that only linearmodelswere used in the hierarchy
due to their superior performance.
3 It has to be noted that a B+-tree supports also insertions and deletions, which require a more
complex structure that is both slower andmore space-inefficient than other static tree-based indexes.
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2.2.1 ASLM

The Adaptive Single Layer Model (ASLM) [23] is a single-stage learned index that
addresses two shortcomings of RMI: the potentially poor distribution of keys among
models in the lower levels of the DAG, and the lack of support for updates.

For the first problem, ASLM heuristically partitions the dataset D to minimise the
chance that a model is trained on data points which are far apart. First, the Euclidean
distance between every two consecutive points in the sorted dataset D is computed.
Second, the distances are sorted in descending order. Third, the points corresponding
to the first p distances in the sorted order are selected as partition boundaries, where p
is a fixed parameter. Fourth, the partitions are further refined by splitting or merging
the consecutive ones whose size is above or below a certain fixed threshold, so to
guarantee a certain balance among the sizes of the partitions. Finally, a model is
created for each partition and trained on it. Overall, the construction cost is bounded
above by the sorting of n keys.

ASLM requires some sort of search to select the correct model for the queried
key, while RMI uses the output of the root model to pick the model in the next stage.
Moreover, the adaptability of ASLM to a given dataset is somehow hindered by the
fact that the number p of models and the thresholds for splitting/merging partitions
must be tuned. Authors reported that the partitioning strategy of ASLM reduced the
average prediction error up to 3.8× with respect to a two-stage RMI that used 3-layer
neural networks with 32 hidden units and ReLU activations.

For the second problem (i.e. the support for updates), ASLM maintains with each
model both a data array and a buffer. An insertion affects the data array only if the
error of the inserted key is less than the average error of the model. Otherwise, the
key is inserted into the buffer.4 Once the buffer is full, it is merged with the data array
and the corresponding model is retrained. A deletion either removes a key from the
buffer, or it marks the key as deleted in the data array. In this latter case, no retraining
is necessary since the other keys are not moved from their positions, and hence the
performance of the current model remains unchanged.

To avoid too large (or too small) data arrays, ASLM performs a split (or merge)
strategy that creates a newmodel (or fuses two consecutive models) once some lower
(or upper) threshold on the number of elements is hit. Clearly, these split/merge
operations trigger the retraining of the affected model, but this retraining is likely to
be quick since the weights of the original model can be used as the starting weights
for the new model.

2.2.2 Hybrid-O

The authors of RMI suggested to replace a last-stage model by a B-tree if its error
exceeds a user-defined threshold. Other authors [30] suggested instead to detect the
keys that cause large errors (called “outliers”), store them in a B-tree and retrain the

4 The authors suggest organising the buffer “like a hash table”. Even though hashing simplifies
buffer modifications, we lose the ability to do predecessor or range queries efficiently.
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model on the non-outlier keys. Among the strategies proposed to detect outliers, the
most effective one (in terms of reduction of the prediction error) is to compute the
average µ and the standard deviation σ of the errors produced by a trained model
and to collect as outliers the keys whose prediction error falls outside [µ−σ, µ+σ].

For the index structure, that we nameHybrid-O, the authors of [30] have proposed
a single-stage index of linear models in conjunction with one B-tree for the outliers.
The construction algorithm partitions the sorted dataset D into blocks of a user-given
size and trains one model for each partition. Then, it collects the outliers with the
strategy described above, adds them to the B-tree and finally retrains each model on
the corresponding outliers-free partition. Both the training and the outliers-detection
steps cost O(n) time, thus making the overall time to construct Hybrid-O equal to
O(n), if we assume that the time to bulk-insert the outliers in the B-tree is negligible.

At query time, a first binary search determines the model responsible for esti-
mating the position pos of a query key x, which is the rightmost model whose first
covered key is less than or equal to x. Let j be the model index, and let minj and
max j be its errors precomputed using (1). Another binary search for x is executed
within A[pos − minj,pos + maxj] and, if the search is unsuccessful, x is searched
within the B-tree associated with this model.

When inserting a new key y, if Hybrid-O detects that y is an outlier (because
its prediction error falls outside [µ − σ, µ + σ]), then y is inserted in the B-tree.
Otherwise, y is added to the partition that corresponds to the model responsible for
y, and the model is retrained. Deletions in Hybrid-O are not discussed in [30].

2.2.3 ALEX

The Adaptive LEarned indeX (ALEX) [10] introduces a top-down adaptive way
of constructing a tree-shaped linear learned index. Specifically, the linear model in
the root is trained on the entire dataset D as in RMI. Then, in order to create the
children of the root node, its codomain [0,n) is divided into a number p (to be tuned
beforehand) of equal-sized partitions which are scanned in sorted order. If the root
model maps more than a user-given number m of keys into one partition, a new inner
node for this partition is created, and the construction algorithm is run recursively
on this node. Otherwise, the partition is merged with the subsequent partitions (as
long as the number of accumulated keys is less than m), and a leaf node is created
and trained on it. Note that in no case a trained model is discarded: it either becomes
part of a leaf node approximating the position of the query key, or it becomes a
routing model that forwards the query key to one of its children, as we will see
shortly. If we assume that the partitions are balanced in terms of the number of
keys which fall in each of them, then this construction process obeys the recurrence
T(n) = p T(n/p) + Θ(n), which has solution O(n log n) for any p > 1.

In ALEX, each inner node stores both its learned linear model and one pointer
for each children node which is responsible for a partition of the space managed
by the current node. This allows to traverse the hierarchy of models without any
search in-between levels by taking the currently visited node prediction, say c(x),
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Fig. 5 To overcome the static
nature of RMI, ALEX instan-
tiates linear models as needed,
growing deeper until each
leaf model has approximately
the same number of keys. A
search is performed similarly
to RMI, with the difference
that here a leaf model j stores
a subarray A j of the original
sorted input array A.
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and following the bp ·c(x)/nc-th child pointer. Instead, a leaf node j stores the model
fj and stores the nj keys the model was trained on in a sorted array Aj , which is a
subarray of A. Once a search arrives at a leaf node j, ALEX performs an exponential
search in Aj starting from the position b fj(x)c. An example of a search in ALEX is
depicted with solid lines in Figure 5, where for simplicity we did not show the arrays
of pointers inside inner nodes.

To accommodate insertions, ALEX can be configured to store the keys at the
leaves in either a Gapped Array (GA) [2] or in a Packed Memory Array (PMA) [3].
Both GA and PMA are sorted arrays that evenly intersperse empty spaces among the
nj keys so that making space for a new key requires pushing to the left or to the right
of the insertion position only a small number of elements, i.e. only O(log nj) moves
for random insertion patterns. However, at the expense of a more involved algorithm,
PMA guarantees O(log2 nj) worst-case time inserts for any insertion pattern, which
is better than the O(nj) time of a GA. In both choices of the key array, ALEX uses
the model to predict the approximate insertion position, which is then corrected by
an exponential search.

If the distribution of keys changes after several inserts, then some leaves will
become overloaded with data. In this case, the authors suggest to transform an
overloaded leaf to an inner node and to create a number of child nodes, similar
to what happens in the construction of the entire ALEX data structure. The net
consequence is that ALEX grows deeper and deeper, possibly slowing down queries
until a full index reconstruction is performed.

Deletions in ALEX are not discussed in [10], but we can observe that, after
locating the key to delete with the search algorithm described above, one can use the
PMA deletion algorithm that takes O(log2 nj) amortised time [3].

2.2.4 AIDEL

Similar to ASLM and ALEX, the learned index based on Adaptive InDEpendent
Linear regression models (AIDEL) [22] addresses the poor key distribution strategy
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of RMI and its lack of support for updates. But, unlike the others, AIDEL pro-
vides some latency guarantees too. They hinge upon a user-given integer parameter
ε ≥ 1 indicating the maximum tolerable error for a model, and thus it proposes a
construction algorithm that finds the proper number of models to match this error
bound.

The construction algorithm trains a linear model on increasingly larger partitions
of the key-sorted dataset, starting from the first key. A partition expands by a constant
number k of keys set beforehand. At each expansion, the current model errors minj

and max j are computed using (1). As soon as one of the two errors exceeds ε, the
partition is iteratively decreased in size by a user-given fraction of k until the linear
model error is not larger than ε. The last trained linear model is then appended to the
result, and the process is continued on the rest of the dataset. Once the whole dataset
is processed, each trained model fj (one for each partition) is stored in a directory
structure alongside the first key it covers and the values minj and max j .

The construction of AIDEL takes O(n2) time, because we have Θ(n) expansions,
each taking O(n) time to train and evaluate the error incurred by the current model.

At query time, AIDEL picks from the directory structure the model that can best
approximate the position of the query key x, i.e. the rightmost fj in the directory
whose first covered key is less than or equal to x.5 Then, a final binary search is
performed on A[pos − minj,pos + max j], where pos = fj(x). Note that this last
step costs O(log ε) time due to the threshold guaranteed on minj and max j . It goes
without saying that RMI, ASLM, Hybrid-O and ALEX have no such guarantee in
the search time which may be, thus, bounded only by O(log n).

For the insertions, AIDEL adopts a simple but memory-hungry approach. It allo-
cates a sorted list for each pair of consecutive input keys xi, xi+1 that accommodates
the insertions of new keys falling between xi and xi+1.When a sorted list becomes too
long, it is merged with A, and the construction algorithm of the previous paragraph
is rerun over the newly merged keys. The directory structure is updated accordingly.

The deletion of a key y in AIDEL is not discussed in [22], but we can observe
that it can be handled by removing y from the ith sorted list if y falls between two
consecutive keys xi, xi+1 in A, or by marking y as deleted (e.g. with an array of flags
of the same size of A) if y belongs to A.

Intermezzo: avoiding the model retraining

Some techniques have been suggested to avoid the model retraining after up-
dates [14]. The main idea is to keep the trained model (e.g. the whole RMI hierarchy
or a single model from ASLM or Hybrid-O) as is, to mark the deletions with a flag,
and to correct the drift in position estimates caused by the insertions. This correction
can be done in two ways.

5 The authors do not discuss the details of this step, but we assume that it is performed inO(log m̃)
time via a binary search on the m̃ sorted key-model pairs.
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The first way is to learn the update distribution, say with a CDF model G, so that
the position of a key x in the index updated after ni insertions is approximated by
nF(x) + niG(x), where F is the CDF model trained on D.

The second way is to estimate the drift by considering the (known) drift of some
reference points. Specifically, the data array is divided into blocks of fixed size
2b , and the first key inside each block is chosen as the reference point. For each
reference point, we store an integer counting how many keys have been inserted in
the block that precedes it. Therefore, computing the number of keys inserted before
a reference point amounts to compute a prefix sum of the counters of all the blocks
that precede the reference point. After the insertions, the drift of the ith reference
point is computed by subtracting its true position (equal to i2b plus the number of
keys inserted before it) from the position estimated by F for the reference point. At
query time, the position for a key x is computed as nF(x) − ∆(x), where ∆(x) is the
correction computed by interpolating the two nearest reference point drifts at the left
and at the right of x.

2.3 The FITing-tree

The FITing-tree [13] has introduced a more principled way of learning the data
distribution D = {(x, rank(x))}x∈A. This problem is reduced to the problem of
computing a Piecewise Linear Approximation (PLA) of D which guarantees a user-
given maximum error ε ≥ 1 and consists of the least amount of linear models. The
first condition guarantees an upper bound on the search time, the second condition
minimises the space occupancy of a learned index.

Formally speaking, the smallest PLA for a subarray A[0, b] which incurs error ε
has size (i.e. number of linear models)

T[b] = 1 + min
a∈Cε (b)

T[a − 1] with T[0] = 1, (2)

where Cε(b) is the set of starting points of linear models having maximum error
ε and ending in A[b]. In other words, the minimum-size PLA for A[0, b] is found
by considering the minimum-size PLA for A[0,a − 1] along with the single linear
model which covers the remaining subarray A[a, b], where a is varied in such a way
that the linear model covering A[a, b] has a maximum error of ε.

Equation 2 leads to a dynamic programming algorithm which, however, has a
prohibitive O(n3) running time. For this reason, the authors of [13] proposed a
greedy linear-time algorithm that takes the first key of A, as the starting point, and
then attempts to maximise the length of the linear model whose error is smaller than
ε. This maximisation is done by keeping a cone defined by the origin (A[0],0), initial
high slope +∞, and initial low slope 0. Each time the length of the linear model is
extended with a new key, the cone either narrows (decreasing one or both slopes),
or stays the same. When a key A[i] falls outside the cone, the process is stopped and
a linear model is created for the subarray A[0, i − 1] taking as slope any value in the
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Fig. 6 A FITing-tree par-
titions A into subarrays A j ,
each of which is indexed by a
linear model with maximum
error ε. The segments sj
(tuples containing the first
key covered by the linear
model and the parameters of
the model) are indexed by a
B+-tree which stores in its leaf
level the first keys of all those
m̃ segments.

A1 A2 A3 A4 A5

x

s1 s2 s3 s4 s5

[pos − ε, pos + ε]

current slope range and using (A[i], i) as the origin of a new cone. Eventually, the
whole dataset is processed and the final result is a partition of A into m̃ variable-sized
ranges that can be approximated with linear models guaranteeing maximum error ε.

In order to dig into the technical details of the FITing-tree, let us define a segment
as a tuple containing the first key covered by a linear model (which we call the key of
the segment), the parameters of the linear model (hence, its slope and intercept), and
a pointer to the subarray of A containing the range of keys covered by that segment.
The FITing-tree is then constructed by indexing via a B+-tree the (first) key of
each one the m̃ segments produced by the greedy algorithm. This way, that B+-tree
occupies Θ(m̃/B) disk pages and has depth Θ(logB m̃).

At query time, the B+-tree is first searched to find the segment sj that the query
key x belongs to. Then, the segment is used to predict the approximate position
pos of the query key x inside the pointed data array Aj . Finally, a binary search is
performed in Aj[pos− ε,pos+ ε] to find the correct position of x in the whole array
A, as depicted in Figure 6. Finding the segment sj costs O(logB m̃) I/Os, while the
final binary search step costs O(log(ε/B)) I/Os, because sj is guaranteed to incur
an error ε in estimating the position of x in Aj . The total cost of a query is thus
O(logB m̃ + log(ε/B)) I/Os.

For the insertions, a FITing-tree adopts one of the following two strategies: in-place
inserts or delta inserts.

A FITing-tree configured for in-place inserts avoids invalidating a segment by
introducing a positive integer parameter β called “insert budget”, by constructing a
FITing-tree with maximum error ε + β, and by padding Aj with β empty slots at
the beginning and at the end of it. Inserting a new key x into Aj is implemented by
locating the insertion position of x and by making room for x by shifting the existing
keys towards the start or the end of Aj , depending on which is closer. However, once
all empty spaces in Aj are filled, the greedy algorithm must reprocess the keys in
Aj . This step either allocates a larger array or it introduces new segments if one
segment is not enough to guarantee an error ε+ β. In this latter case, the old segment
is deleted and the new ones are added to the B+-tree. The disadvantage of in-place
inserts is that the size of Aj can grow arbitrarily large if the input dataset shows long
linear trends, thus making high the cost of shifting keys in Aj .
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A FITing-tree configured for delta inserts allocates for the j-th segment a fixed-
size sorted buffer. Once the buffer is full, it is merged with Aj and it is re-processed
by the greedy algorithm. As before, this can either produce a single segment, with
a new empty buffer, or multiple segments. The latter case requires the modification
of the B+-tree. The time complexity of an insertion is now linear in the size of the
fixed-size buffer rather than the size of Aj , except for when the buffer is full and
must be merged with Aj .

Deletions in the FITing-tree are not discussed in [13].

2.4 The PGM-index

The Piecewise Geometric Model index (PGM-index) [11, 32] improves the FITing-
tree in several issues: (i) it employs a linear-time PLA construction algorithm which
finds the minimum number of segments covering D with an error of at most ε; (ii) it
builds upon a recursive structure that fully exploits the space/time-efficient routing
of segments, thus resulting much more succinct than B+-trees; (iii) it further reduces
its space occupancy by means of novel techniques that compress the linear models
of the optimal-sized PLA; and, finally, (iv) its structure is flexible enough that it can
adapt not only to the distribution of the input keys but also to the distribution of the
queried keys. The rest of this section will dig into some more details about these
features.

In Section 2.3 we have seen how the problem of computing PLAs can be solved
either optimally via dynamic programming in O(n3) time, or heuristically in O(n)
time but renouncing to optimality. Interestingly enough, this problem has been
extensively studied in computational geometry, and it admits streaming algorithms
which produce the minimal number of segments m? in only O(n) time [28]. The
PGM-index deploys one of these optimal algorithms and stores at its lowest level
the minimum-size sequence of m? segments as triples, each consisting of the first
key covered by the segment, its slope and intercept. The improvement induced by
the storage of m?, instead of m̃, segments is significant and up to 63% [11].

The second feature of the PGM-index is its recursive structure. Its construction
startswith thewhole input array A that is turned into the set of two-dimensional points
D = {(x, rank(x))}x∈A, as we commented in the previous pages. D is processed by
the optimal algorithm of [28] which produces the minimum-size sequence of m?

segments covering the keys in A with an error of at most ε. Then, the first key
covered by each segment is extracted and used to form a new set of m? keys, over
which the minimum-size PLA construction algorithm is applied again. Recursion
proceeds until only one segment is obtained. Each level of the recursion corresponds
to a level of the PGM-index, starting from the bottom, in which there is a one-to-
one correspondence between segments and nodes of the PGM-index. In a way, this
approach constructs a sort of multiway search tree but with three main advantages
with respect to the B+-tree constructed by the FITing-tree: (i) the nodes of the
PGM-index have variable fan-out driven by the (typically large) number of keys
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Fig. 7 Each segment in a PGM-index routes the queried key to one of the segments of the level
below by computing a position that is at most ε away from the correct one. In this picture ε = 1,
the cyan nodes are the ones traversed by the search for the key x = 76, and the brackets specify the
range where the binary search is performed: actually, the binary search is executed over the first
key of each segment in the range, which is stored as the first component of the triple denoting a
segment.

covered by segments, so that the height and space occupancy of the index is very
small in practice; (ii) the segment associated with a node plays the role of a constant-
space and constant-time ε-approximate routing table for the various queries to be
supported; (iii) the search in each node corrects the ε-approximate position returned
by that routing table via a binary search (see next), and thus it has a time cost that
depends logarithmic on ε.

At query time, the PGM-index uses the current segment (initially the root) to
estimate the position of the searched key among the keys of the next lower level. The
real position is then found by a binary search in a range of size 2ε centred around
the estimated position. Given that every key on the next lower level is the first key
covered by a segment on that level, the binary search has identified the next segment
to query. So the process continues until the last level is reached and the position in
A of the queried key is determined.

Example: search in a PGM-index

Consider the PGM-index with ε = 1 in Figure 7. A query for the key x = 76 starts
from the root node which stores the segment levels[0][0] = (2, sl00, ic

0
0) where 2 is its

first covered key, sl00 is the slope of the segment and ic0
0 is its intercept.

Level 1. The current segment allows to compute the approximate position of the
searched key x = 76 as bx · sl00 + ic0

0c = 1. Since the current segment has
a maximum error of ε = 1, a binary search over the (first covered) keys in
levels[1][1−ε,1+ε] = [2,31,102] suffices to determine that the correct position
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of x is between 31 and 102, so that the next segment responsible for x is
levels[1][1] = (31, sl11, ic

1
1).

Level 2. The algorithm above is repeated on the current segment, by computing the
approximate position bx · sl11 + ic1

1c = 3 which is then corrected by performing
a binary search in levels[2][3 − ε,3 + ε] = [31,48,71]. This finds that the
correct position of x is after 71, so that the next segment responsible for x is
levels[2][4] = (71, sl24, ic

2
4).

Level 3. The last level consists of the array A, and the current segment allows to
compute the approximate position bx · sl24 + ic2

4c = 17 which is then corrected
by performing a binary search in A[17 − ε,17 + ε] = [73,74,76]. This search is
successful and finds that x occurs in position 18.

It can be shown that the construction of the PGM-index reduces the number of
segments at each level by a multiplicative factor larger than 2ε, so that the final data
structure has O(logε m?) levels.

Theorem 1 ([11]) Let A be an ordered array of n keys from a universeU, and ε ≥ 1
be a fixed integer parameter. The PGM-index with parameter ε indexes the array
A taking Θ(m?) space and answers rank, membership and predecessor queries in
O(log m? + log ε) time and O((logε m?) log(ε/B)) I/Os, where m? is the minimum
number of segments covering A with a maximum error of ε, and B is the block size
of the external memory model. Range queries are answered in an additional O(K)
time and O(K/B) I/Os, where K is the number of keys satisfying the range query.

The PGM-index can match the optimal worst-case query complexity of the B+-
tree by choosing ε = Θ(B), thus resulting O(logB m?) = O(logB n). In practice, the
fan-out of every node of the PGM-index is much larger than by 2ε as well as the
value of m? is orders of magnitude smaller than n, so that its query time and space
occupancy result very small for real-world datasets. Therefore, the PGM-index can
be considered the first learned drop-in replacement for traditional indexes to date.

The PGM-index can also be generalised to include nonlinear models. Indeed,
there exists an O(n log n) time greedy algorithm, described in [32, §2.2], that still
guarantees a maximum error ε when using nonlinear models. Preliminary experi-
ments with shallow neural networks showed a reduction of the number of models in
the lowest level of a PGM-index, but this did not reduce the overall space occupancy,
suggesting that trading-off model complexity with space occupancy is an open issue
that deserves further research.

For what concerns inserts, if new keys are appended to the end of the array A while
maintaining the sorted order (as it occurs in time series), the update of the PGM-
index is easy and efficient. In fact, the last segment can be updated inO(1) amortised
time and, if the new key k can be covered by this last segment while preserving the
ε guarantee, then the insertion process stops. Otherwise, a new segment with key
k is created and the insertion of k is repeated recursively in the last segment of
the level above. The recursion stops when a segment at any level covers k within



Learned data structures 19

the ε guarantee, or when the root segment is reached possibly determining its split
and, thus, the creation of a new level/segment above. Since the updates at each level
take constant amortised I/Os, the overall amortised I/O complexity of this insertion
algorithm is O(logε m?).

For general inserts, the PGM-index defines b = Θ(log n) static PGM-indexes
built over sets S0, . . . ,Sb of keys which are either empty or have size 20,21, . . . ,2b .
Each insert of a key k, finds the first set Si which is empty and builds a new PGM-
index over the set S0 ∪ · · · ∪ Si−1 ∪ {k}. This union can be computed in linear
time because we can assume that the sets Sjs are sorted, and thus a simple merging
creates the new sorted set which consists of 2i keys (the sets Sjs preceding Si are
full). The new merged set can be used as Si , and the previous sets can be emptied.
This algorithm can be shown to take O(log n) amortised time, while membership
and predecessor queries take O(log n (log m? + log ε)) time because every search
must be executed on all the b = Θ(log n) static PGM-indexes.

The analysis in the external memory model (that we omit here), completes the
proof of the following result.

Theorem 2 ([11]) Under the same assumption of Theorem 1, the Dynamic PGM-
index with parameter ε indexes the dynamic array A and answers membership and
predecessor queries in O(log n (log m? + log ε)) time, insertions and deletions in
O(log n) amortised time. In the external memory model with block size B, mem-
bership and predecessor queries take O((logB n)(logε m?)) I/Os, insertions and
deletions take O(logB n) amortised I/Os.

For the results about the compression of the parameters of the segments (intercept
and slopes), and the adaptability of the PGM-index to the query distribution, we
refer the reader to [11] and mention that an implementation of the PGM-index is
publicly available at https://pgm.unipi.it.

2.5 Learned multidimensional and secondary indexes

All learned indexes we discussed so far can easily be extended to handle multidi-
mensional data such as geographic coordinates. In fact, multidimensional keys can
be mapped onto one single dimension via space-filling curves that preserve spa-
tial proximity, and then use any one-dimensional index structure over the projected
points [12]. One such mapping, called Z-order or Morton order, simply concate-
nates the result of interleaving the binary representations of the coordinate values.
For example, the three-dimensional point (4,7,1) = (100,111,001) is mapped to
011 010 110 = 214. Experiments on the combination of Z-order and RMI showed
that, with respect to an R-tree, space is reduced by up to 97% and the query time is
improved by up to 2.5× [34].

In databases, it is common to build separate indexes on different columns of a
table. In such cases, at most one index can have the same ordering of the records

https://pgm.di.unipi.it
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in the table, which is typically the index on the primary key of the table. The
other indexes, called secondary and unclustered indexes, cannot. Even though we
described learned indexes assuming the data being sorted by key, it is still possible
to use them as secondary indexes. In fact, we can create (value,pointer) pairs where
each value in the indexed column is associated with a pointer to the original record
(or a list of pointers in the case of non-unique values). A pointer can be a record
identifier or the primary key of the record. Then, we sort the pairs by value and create
a learned secondary index on it. At query time, the learned secondary index locates
the (value,pointer) pair associated with the sought value and outputs the record
pointed by pointer. Note that the space overhead of using this kind of indirection for
secondary indexes occurs also if one uses traditional indexes, but learned indexes
have the additional benefit of being more succinct in space and possibly faster in
query time.

An alternative approach to build secondary indexes consists of capturing the correla-
tion between the target column T and a host column H for which there already exists
an index. The Tiered Regression Search Tree (TRS-tree) [35] learns the mapping
H = h(T) by recursively dividing T’s value range into a number of equal-sized sub-
ranges until every pair (t, h) of values from T and H covered by the corresponding
subrange can be well estimated using linear regression. Specifically, the construction
starts from the root node being the current node and associates with each node a range
of T , which for the root is the whole range of T’s values. The algorithm retrieves
from the table all pairs (t, h) such that t is within the range associated with the current
node and trains a linear regression model on such pairs. Then, the pairs on which
the linear model makes an error greater than a user-given parameter ε are inserted
into an outlier buffer. If the size of the outlier buffer exceeds a fixed amount, the
current range is divided into a fixed number p of equal-sized subranges, the current
node becomes an internal (routing) node, and the construction process is repeated
recursively on the p children of the current node, one for each subrange. Otherwise,
the node becomes a leaf node and it stores the linear regression model parameters
and the outlier buffer, which is implemented as a hash table mapping from t to the
corresponding record identifier (either a primary key or a tuple location).

At query time, a predicate P = lb ≤ T ≤ ub is implemented via a breadth-first
search that starts from the root node and visits all children whose range overlaps
with P. At a leaf node with range r , the endpoints of the intersection between P and
r are mapped to a range on H via the linear model stored in the leaf, and the outliers
are collected from the buffer. Once the breadth-first search is completed, the ranges
on H are used to query the existing index on the host column, while the outliers are
fetched directly by visiting the corresponding record identifiers. Since the TRS-tree
may return false positives, the fetched tuples are compared against P and possibly
filtered out from the result of the query.
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2.6 Comparison among learned indexes

A comparison among the learned indexes discussed so far is given in Table 2, where
we use the following terminology and notation. First of all, the complexity bounds
are given in terms of the number n of keys in the input dataset, the number ` of levels
in the DAG structure of RMI, the (sub-optimal) number m̃ of segments which cover
the keys in the input dataset with error ε, and the optimal number m? of segments
which cover the keys in the input dataset with error ε, as computed by the algorithm
of [28].

The “Structure” column groups learned indexes according to how they arrange
the (learned and non-learned) models they are composed of. The most common kind
of structure is a tree, which partitions the input array A so that each model specialises
on a specific subarray of A that gets smaller and smaller as the depth of the model
in the structure grows. In a tree-structured learned index, a query always follows a
root-to-leaf path, where the next model is either chosen via a fixed number of key
comparisons (as in FITing-tree or PGM-index) or via a model prediction (as in
RMI and ALEX). Differently, we say that the structure is a Direct Acyclic Graph
(DAG)when amodel can havemore than one parent model: this is the case of anRMI
with three or more stages. Lastly, we mention that some learned indexes have a flat
structure, in which there is only one level of learned models and a comparison-based
search algorithm, such as linear or binary search, that corrects the prediction error
incurred by the learned models. A flat structure is convenient only when the models

Table 2 Comparison among known learned indexes. The integer ε ≥ 1 denotes the bound on the
prediction error, m̃ represents the number of linear models computed by the greedy algorithms in
[13, 22], whilem? ≤ m̃ represents the minimum number of linear models computed by the optimal
algorithm [28].

Name Structure Complexities Properties

Constr. time Query time Query I/Os

A
daptive

structure
B
oundsthe

error
O
ptim

alspace
Insertions/D

eletions

RMI [21] DAG O(`n)† ? ? – – – –
ASLM [23] Flat O(n)† ? ? G# – –  
Hybrid-O [30] Flat O(n) ? ? G# – –  
ALEX [10] Tree-like O(n log n) ? ? G# – –  
AIDEL [22] Flat O(n2) O(log m̃)§ O(log(m̃/B))   –  
FITing-tree [13] Tree-like O(n) O(log m̃)§ O(logB m̃)‡   –  
PGM-index [11] Tree-like O(n) O(logm?)§ O(logε m?)‡     

 = provides property; G# = partially provides property; – = does not provide property;
†assuming models with linear time training; ‡ε = Ω(B); §plusO(log ε).
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can be kept in the faster levels of the memory hierarchy; otherwise, it is better to
keep the models in a B+-tree (as the FITing-tree does) or to recursively build a
smaller/faster routing structure composed of levels of learned models (as proposed
by the PGM-index).

The “Adaptive structure” column shows to what extent a learned index automati-
cally allocates the proper kind and number of models, thus tuning itself to the best
configuration for the input dataset. This feature is especially important in scenarios
where (i) the software engineer does not have a deep understanding of the learned in-
dex and its possiblemodels, for example, because the index is part of a larger software
system; (ii) the tuning process is not feasible, such as in resource/time-constrained
devices/applications; or (iii) the data distribution changes over time, such as when
new batches of data trigger a rebuild of the index to avoid performance degradation.

The “Bounds the error” column shows which learned indexes allow the user to
control the maximum error incurred by the learned models. This, in turn, guarantees
an upper bound on the search latency. A learned index that does not have such
property can be susceptible to unpredictable query times, especially when data is
too large to be stored in the faster levels of the memory hierarchy.

The last column shows which learned indexes support insertions and deletions
without a full reconstruction of the data structure.

3 Learned data structures for exact membership

There are applications which do not demand sophisticated operations like rank,
predecessor or range queries. Dropping them and focusing only on membership
queries can substantially simplify the design of data structures and improve the time
complexity of the queries, as we will see shortly.

The dictionary problem asks to store a set S of n keys drawn from an universe
U in order to support membership queries, insertions and deletions of keys.
A key in S can also be associated with auxiliary data, in which case we aim
also to support the lookup operation which, given a query x, returns the data
associated with x if x ∈ S, or nil otherwise.

The historical solution to the dictionary problem is provided by hash tables.
Hash tables are composed of an array T of size m ≥ n, a hash function h : U →
{0, . . . ,m−1} that assigns each key in the universe to a location inT , and a strategy to
handle the collisions that occur when more than one key maps to the same location.
Some examples of these strategies are (see [25] for a complete discussion): chaining,
where T[h(x)] is the head of a linked list containing elements having the same hash
value h(x), thus allowing O(1+n/m) expected time membership queries; or Cuckoo
hashing, which uses two hash functions h1, h2 and places an element x in either
T[h1(x)] or T[h2(x)], thus allowing O(1) worst-case time membership queries.
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In Section 2, we have seen how the indexing problem boils down to learn the CDF
model F(x) of the input set S of keys. It turns out that the same function F can be used
to implement h(x) as bmF(x)c. If the model F perfectly learns the empirical CDF of
S and m is sufficiently large, then no conflicts would occur and thus the membership
query could be solved in constant worst-case time. In general, the final performance
depends onwhich hash table architecture is used (e.g. table size, collision resolution),
how well F approximates the true empirical CDF of S, and how much F is difficult
to compute. For example, using several datasets and a table of size m = n, RMI with
100K linear models in the second stage reduced the number of conflicts by about
45% with respect to a MurmurHash function [21], but at the cost of increased time
complexity. In fact, for 8-byte keys with 12-bytes auxiliary data, and a hash table
with chaining having size m varied from 75% to 125% of n, the lookup times of
using the learned hash function with respect to MurmurHash increased on average
by 40%.

Very recently, Pavo [36] suggested an alternative approach for string queries. Pavo
implements h via a rather complicated graph structurewith recurrent neural networks
as nodes. Specifically, the input strings are divided into bigrams and fed first to a
disperse step, which is an RMI-like hierarchy of experts whose purpose is to split the
dataset into subsets that can be learned more easily. Each model in this disperse step
is a recurrent neural network trained to “predict the MurmurHash” of a given key.6
Then, a mapping step uses an unsupervised approach to evenly distribute inputs
of the previous step to a range of T . Experimentally, Pavo was shown to reduce
the average chain lengths by up to 50%, but it increased by 3–4 times the cost of
computing the hash value with respect to MurmurHash.

Discussion. At the moment of writing, it seems unlikely that learned hash tables
can compete with traditional and well-established hash tables. In fact, in contrast
to traditional hash functions, the learned approaches described above increase the
construction time due to the training step, the number of accesses in memory to
retrieve the parameters of the model and the time to compute the hash due to the
matrix multiplications required for model inference. As a matter of fact, if we are
willing to spend more space (and time) for a learned hash function only to reduce the
number of collisions, then we might as well increase the size of the hash table itself
and keep using a fast traditional hash function. More importantly, a CDF model
F used as a hash function of the form h(x) = bmF(x)c does not distribute keys
uniformly in the hash table, and this could be exploited by an adversary to create
arbitrarily long collision chains.

6We remark that MurmurHash is a known function which can be implemented in a few dozen lines
of C code.
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4 Learned data structures for approximate membership

There are situations in which the universeU of keys is very large, and thus the keys
are long enough to take a lot of space to be stored in a dictionary structure like the
ones described in Section 3. As an example, a web crawler could use a hash table
to filter out the web pages it has already visited, but the long URLs would quickly
consume all the available memory. In these cases, we can slightly relax the definition
of membership query, introduce some errors in the returned answers, and eventually
use much more space-efficient structures.

The approximatemembership problem asks to store a set S of n keys drawn from
a universeU and support membership queries by admitting some (controlled)
errors in the answer. More precisely, for a query on the key x ∈ S, it is reported
that x ∈ S (no false negatives). But for a query on the key x < S, it is reported
erroneously that x ∈ S (a false positive) with probability at most ε .

The most famous and classic data structure for this problem is the Bloom filter [5].
A Bloom filter consists of an array of m bits, initially all set to 0, and k independent
hash functions h1, . . . , hk with codomain {1, . . . ,m}. For each x ∈ S, the bits hi(x)
are set to 1 for 1 ≤ i ≤ k. A query for y is answered affirmatively if all bits at hi(y)
are 1 and negatively otherwise, as shown in Figure 8. The false positive probability
of a Bloom filter is (

1 −
(
1 −

1
m

)kn)k
≈

(
1 − e−kn/m

)k
. (3)

Given m and n, the optimal number of hash functions is k = (m/n) ln 2, which gives
a false positive probability of about (0.6185)m/n.

Once again, ML has given us a different perspective on this classic algorithmic prob-
lem. Indeed, the approximate membership problem can be framed as a supervised
binary classification task in which the dataset D = {(x,1)}x∈S ∪ {(x,0)}x∈U\S is

Fig. 8 The membership query
q in a Bloom filter with
two elements x1 and x2 is
answered negatively because
one of the three hash functions
maps q to a cell containing 0.

0 1 0 0 1 1 0 0 1 0 1 0 1 0

x1 x2

q
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f (x) ≥ τ
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f (x) < τ

x ∈ N
x ∈ S

x < N

x < S

(a) LBF

Bloom filter

LBF

x

x < S
x < S

x ∈ S

x ∈ S

x < S

(b) Sandwiched LBF

Fig. 9 (a) A Learned Bloom Filter (LBF) uses a learned oracle f to classify the membership of
x, and it uses a backup Bloom filter on the set of false negatives N that x produces on S. (b) A
Sandwiched LBF adds an initial Bloom filter before the LBF.

given, and we look for a model g : U → {0,1} mapping keys from the universe to a
boolean indicating whether or not a key is in S. Note that the setU \ S can be huge,
and in practice one would choose a subset of it.

4.1 Learned Bloom filters

The first learned approximate membership data structure, called Learned Bloom
Filter (LBF) [21], uses a neural network f : U → [0,1] with sigmoid activations in
the output layer and is trained to minimise the log loss function

L =
∑
(x,y)∈D

y log f (x) + (1 − y) log(1 − f (x)).

The output value f (x) can be then interpreted as a “probability” that a given key x
belongs to S. Thus, the model f can be turned into a learned classifier of membership
by simply setting a threshold τ on f (x), and declaring x ∈ S iff f (x) ≥ τ. However,
unlike classic Bloom filters, this learned approach may introduce false negatives. As
a solution, the set of false negatives N = {x ∈ S | f (x) < τ} is used to construct a
smaller “backup” classical Bloom filter B with a fixed false positive rate FPRB, as
depicted in Figure 9a.
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For a given test set of missing keys T ⊆ U \ S, the empirical false positive rate of
the model is FPRτ = |{x ∈ T | f (x) ≥ τ}|/|T |. Therefore, the overall empirical false
positive rate of an LBF is FPRO = FPRτ + (1 − FPRτ)FPRB. With a good choice
of f and a proper tuning of τ on a validation set, the LBF can obtain the desired
false positive rate while reducing the space consumption with respect to a traditional
Bloom filter. Indeed, experiments on 1.7 million URLs showed that LBF reduced
the space of a Bloom filter with 1% false positive rate from 2.04 MB to 1.31 MB
(36% less), while with 0.1% false positive rate the space reduced from 3.06 MB to
2.59 MB (15% less). Subsequent research [24] extended LBFs to take tuples as input
while allowing wildcard membership queries, i.e. queries in which only a subset of
tuple entries are specified.

From a theoretical perspective, it has been shown that, under the assumption that
the test set T and the future queries Q have the same distribution, the empirical
false positive rate of an LBF is close to the false positive rate on Q, as both are
concentrated around the expectation.

Theorem 3 ([26]) Consider a learned Bloom filter f : U → [0,1] with threshold τ
and backup Bloom filter B. Consider a test set T and a query set Q, where T and
Q are both determined from samples according to a distribution D. Let X be the
empirical false positive rate on T , and Y be the empirical false positive rate on Q.
Then

Pr(|X − Y | ≥ ε) ≤ e−Ω(ε
2 min( |T |, |Q |)).

It is important to note here that if the assumption of Theorem 3 is not met (e.g.
if the query set distribution changes over time and it is no more “close” to the one
of the test set) then, unlike in the traditional Bloom filter, there are no guarantees on
the number of false positives of an LBF.

4.2 Sandwiched learned Bloom filters

The Sandwiched Learned Bloom Filter (Sandwiched LBF) [26] improves the LBF
by adding a Bloom filter before using f in order to remove most queries for keys
not in S. At query time, the initial Bloom filter (BF) forwards to f the keys that it
would declare to belong to S, but returns an immediate negative answer otherwise.
Then, as before, f attempts to remove false positives and the backup filter is used
to remove the false negatives (see Figure 9b). The advantage gained by adding the
initial BF is that it reduces the number of false positives passed to f and, in turn,
it allows the backup filter to be weaker, and thus much smaller in space. Moreover,
the initial BF may make the overall learned approach more robust if the queries do
not come from the same distribution of the test set used to estimate the false positive
rate of the LBF.

To analyse the Sandwiched LBF on a set S of n keys, we assume a total budget
of bn bits to be divided between the initial Bloom filter of b1n bits and the backup
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Bloom filter of b2n bits. Assume also that we can pick an oracle f with a false
positive probability of F+ that produces nF− false negatives on S. Let us model the
false positive rate of a BF that uses j bits per stored key as α j , where α ≈ 0.6185 in
the standard Bloom filter. The false positive rate of a Sandwiched LBF is then

αb1
(
F+ + (1 − F−)αb2/F

−
)
. (4)

Indeed, for a key y < S to be declared as a member of the set, y first has to pass
through the initial Bloom filter with probability αb

1 , and then either f (wrongly)
classifies y as a member of S with probability F+ or, with remaining probability
(1 − F+), it passes y to the backup Bloom filter, whose false positive rate is αb2/F

− .
Setting to zero the derivative of Equation 4 with respect to b1 yields

F+F−

(1 − F+)(1 − F−)
= α(b−b1)/F

−

= αb2/F
−

,

so that the false positive rate is minimised at

b∗2 = F− logα
F+F−

(1 − F+)(1 − F−)
.

This last equation reveals that the size of the backup Bloom filter does not depend
on the budgeted number of bits per key bn. Therefore, after appropriately sizing
the backup Bloom filter to prevent false negatives due to f , it is better to spend the
remaining budgeted bits on the initial filter to get rid of false positives up front.

Example: performance of Bloom filters, LBFs and Sandwiched LBFs

Suppose that we have a budget of b = 8 bits per key, and that we pick an oracle f
with F+ = 0.01 and F− = 0.5. Let α = 0.6185 as in the standard Bloom filter. Then

• A standard Bloom filter achieves a false positive probability of

αb ≈ 0.0214.

• An LBF achieves a false positive rate of

F+ + (1 − F+)αb/F− ≈ 0.0105.

• A Sandwiched LBF, that uses the optimal b∗2 ≈ 4.7820, achieves a false positive
rate of

α(b−b
∗
2)
(
F+ + (1 − F−)αb∗2/F

−
)
≈ 0.0043.
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4.3 Neural Bloom filters

ANeural Bloom filter [31] implements the learned oracle of the LBFwith amemory-
augmented neural network. The network learns to address a real-valued memory
matrix M by classifying which memory slots to read or to write depending on the
input. Specifically, the network consists of the function fenc, which is a convolutional
neural network in the case of image inputs or a long short-termmemory network in the
case of text inputs, and the functions fw, fq, fout, which are multilayer perceptrons.
The input x is encoded into an embedding z ← fenc(x), then transformed into a
write vector w ← fw(z) and a query vector q ← fq(z). The address is computed as
a← softmax(qᵀA), where A is a learnable addressmatrix. Awrite is performedwith
an additive write operation to memory weighted by the address, M ← M + waᵀ.
A read is performed by a component-wise multiplication of the address with the
memory, r ← M � a. The read vector r is then fed along with w and z to fout that
produces a single scalar probability o← fout([r,w, z]). Similar to LBFs, the Neural
Bloom filter fixes a threshold τ on the output probability and uses a backup Bloom
filter to correct false negatives.

Experiments on storing 5K strings with 1% false positive rate showed that the
space of Neural Bloom filters with respect Bloom filters reduced from 47.9 KB
to 1.5 KB (32× less). With 0.1% false positive rate, the space reduced from 72.2
KB to 24.5 KB (3× less).7 However, both Learned and Neural Bloom filters had
uncompetitive query latencies (around 400× slower than classic Bloom filters) and
throughputs (20× lower for a batch of 10K queries).

4.4 Adaptive learned Bloom filters

All the learned Bloom filters discussed so far output that a key x belongs to S when
f (x) ≥ τ, regardless of the confidence f (x) the model f has on the membership
of x. As depicted in Figure 10, an Adaptive learned Bloom filter (Ada-LBF) [9]
exploits this confidence to partition the elements of S into r regions delimited
by the thresholds 0 = τ0 < τ1 < · · · < τr−1 < τr = 1. A region j contains
nj = |{x ∈ S | τj−1 ≤ f (x) < τj}| keys from S, which are hashed using k j

independent hash functions with codomain {1, . . . ,m} and inserted into a shared
Bloom filter of m bits. Interestingly, the LBF can be seen as a particular case of the
Ada-LBF where r = 2, τ1 = τ, k1 = k and k2 = 0.

Similar to Bloom filters (see Equation 3), the expected false positive rate of the
jth region of an Ada-LBF is

7 It has to be noted that for 5K elements a Bloom filter of ≈ 6 KB and k = 7 hash functions would
have sufficed to achieve 1% false positives. Similarly, a Bloom filter of ≈ 9 KB and k = 10 hash
functions would have sufficed to achieve 0.1% false positives.
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Fig. 10 Ideally, the distribu-
tion of the outputs returned
by a membership oracle f ,
which we can interpret as the
confidence of the oracle, is
increasing for keys in S and
decreasing for keys not in S.
Ada-LBF partitions this dis-
tribution into r of regions and
uses a proper number of hash
functions for each region.

0 τ1 τ2 τr−1 1
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. . .

f (x)
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si
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E(FPRj) =

(
1 −

(
1 −

1
m

)∑r
i=1 niki

)k j
= γk j . (5)

Moreover, the probability that a key y sampled from a query distribution D over
U \ S (denoted below with y ∼ D) is mapped by f to the region j can be expressed
as

pj = Pr
y∼D
(τj−1 ≤ f (y) < τj). (6)

Putting together Equations 5 and 6, the expected overall false positive rate of an
Ada-LBF is

E(FPR) =
r∑
j=1

pj E(FPRj) =

r∑
j=1

pjγ
k j . (7)

In practice, for a given test set of missing keys T ⊆ U \ S, we can estimate pj

empirically as p̂j = |{x ∈ T | τj−1 ≤ f (x) < τj}|/|T |. Furthermore, since (7) is
hard to minimise due to the many hyperparameters (i.e. τj and k j for 1 ≤ j ≤ r), we
simplify the tuning as follows:

1. Choose a number kmax of hash functions for the first region, i.e. k1 = kmax.
2. Fix kr = 0. In other words, if f (x) ≥ τr−1, we return that x ∈ S without checking

the Bloom filter, similar to what happens in an LBF (cf. Figure 9a).
3. Choose a constant c > 1 and fix p̂j/p̂j+1 = c, k j − k j+1 = 1 for j = 1,2, . . . ,r−1.

This ensures that, as j diminishes, k j increases linearly and p̂j grows exponen-
tially fast.

This leaves us with only two parameters, kmax and c.
Analogously to Theorem 3 for the LBF, it is possible to show that, under the

assumption that the test set T and the future queries have the same distribution, the
empirical false positive rate of an Ada-LBF is close to the real E(FPR).
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Theorem 4 ([9]) Consider an adaptive learned Bloom filter built on a set S, con-
sisting of r regions. Consider a test set T and a query set Q, where T and Q are
both determined from samples according to a distribution D. Then,

∑r
j=1 | p̂j − pj |

converges to 0 in probability as |T | → ∞.

The following result shows under which conditions the Ada-LBF improves the
false positive rate of the corresponding (i.e. same array size and same oracle) LBF.

Theorem 5 ([9]) Consider a learned Bloom filter f : U → [0,1] with threshold
τ and backup Bloom filter of size m with k hash functions. Consider an adaptive
learned Bloom filter with the same oracle f , m bits, r regions, τr−1 = τ, γ as defined
in Equation 5, and pj/pj+1 ≥ c > 1 for j = 1,2, . . . ,r − 1. If there exists λ > 0 such
that cγ ≥ 1 + λ holds, nj+1 − nj > 0 for j = 1,2, . . . ,r − 1, and r ≤ 2k is large
enough, then the adaptive learned Bloom filter has a smaller false positive rate than
the learned Bloom filter.

Authors of [9] discuss also a variant called Disjoint Ada-LBF which hashes the
keys falling a region to a dedicated Bloom filter rather than to the shared Bloom
filter. Experimentally, on a task to identify n ≈ 80K malicious URLs, Ada-LBF with
a random forest oracle (using input features like hostname length, path length, etc.)
reduced the false positive rate by 81% compared to LBF and Sandwiched LBF still
using the same oracle and size (500 Kb). In turn, Disjoint Ada-LBF reduced the
false positive rate by 84%. To achieve a false positive rate of ≈ 0.35%, Ada-BF and
Disjoint Ada-BF used 300 Kb (-40%) with respect to 500Kb of LBF and Sandwiched
LBF.

Discussion. The learned approaches to the approximate membership problem seem
promising. A model that classifies whether an item belongs to the set by exploiting
the item’s features can reduce the overall size taken by the filter.

However, before replacing Bloom filters with any of the above learned variants, it
is important to understand that the guarantees offered by the latter differ significantly
from the former. For example, the false positive probability of Bloom filters holds
for any possible query set, while the false positive rate of their learned counterparts
is highly dependent on the chosen test set. Consequently, unless the queries have
the same distribution of the test set, the actual false positives of the LBF may be
substantially larger than expected. For example, if the learned filter is used to prevent
accesses to a slow cache, then an adversary can exploit its weakness to perform a
denial-of-service attack.

5 Learned data structures for frequency estimation

In the previous sections, we focused on the storage and the retrieval of keys. There are
situations in which we only want to keep and retrieve some statistics of the input data,
which may be too large to store and to analyse in full efficiently. In these cases, we
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must content ourselves with synopses of the data, which typically use little space and
are efficient in providing very accurate approximate answers [7]. A famous problem
in this setting is the following one.

Consider an infinite stream of updates to an array A = [a1, . . . ,an] of n
counters, initially set to zero, where the t-th update is a pair (it, ct ) indicating
that the it -th element of A increased by the value ct . The frequency estimation
problem asks to build a data structure that summarises the stream and allows to
estimate the current value of an element ai , also called “count” or “frequency”
of the i-th element of A.

The most widely used data structure for this problem is the Count-Min (CM)
sketch [7]. The CM sketch with parameters (ε, δ) consists of a two-dimensional array
C of counters of width w and depth d, initially set to zero, and d hash functions
h1, . . . , hd : {1, . . . ,n} → {1, . . . ,w}. When an update (i, c) arrives in the stream,
the CM sketch is updated by changing C[ j, hj(i)] ← C[ j, hj(i)] + c for each row
1 ≤ j ≤ d. At query time, the count for the i-th element of A is estimated as
âi = min1≤ j≤d C[ j, hj(i)], as depicted in Figure 11.

Of course, two items hashing to the same bucket affect each others’ estimate. But
the approximation guarantee is that if w = de/εe and d = dln(1/δ)e, the estimate âi
obeys ai ≤ âi (one-sided error); and, with probability at least 1− δ, âi ≤ ai + ε ‖A‖1.
Here, ‖A‖1 is the sum of the absolute values of A’s elements.

If items with large counts (heavy hitters) collide with other items, then some
estimates provided by the CM sketch may have large errors. Even though it has
been shown that skewed distributions improve the estimations of CM sketch [7],
treating the items with large counts separately from the CM sketch can increase
the overall estimation accuracy. For the rest of the discussion, we assume that only
positive c > 0 updates are possible and discuss ML-based solutions to the frequency
estimation problem.

d

w

i

+c

+c

+c

+c

x

Fig. 11 In a Count-Min (CM) sketch, the hash function associated with a row maps the item i from
the update (i, c) to one of the w counters in the row, which is then incremented by c. The count of
an item x is estimated by taking the minimum over all the d selected counters.
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5.1 ML-oracle classifying heavy hitters

The Learned CM sketch [16] trains beforehand an oracle f to determine whether
an item is a heavy hitter or not. At query time, all items classified by f as heavy
hitters are assigned to unique buckets storing their exact count. All the other items
are forwarded to a CM sketch, as shown in the block diagram in Figure 12. Note
that f should not be regarded as a lookup table, that is, it does not learn the identity
of heavy hitters but the properties that allow to identify them. As an example, when
applied to network traffic, an oracle from [16] based on recurrent neural networks,
fed bit-by-bit with the packet source/destination IP and trained with the squared
loss to predict the packet count, was able to eventually group flows with similar IP
prefixes together, thus reflecting the hierarchical nature of Internet addresses.

The following theorem shows that if f has perfect accuracy and the frequency
of items is from a Zipfian distribution ai = 1/i, then the error of the Learned CM
sketch is up to a logarithmic factor smaller than that of its non-learned counterpart.

Theorem 6 ([16]) Let A = [a1, . . . ,an] be an array of n frequencies such that
ai = 1/i, and let [â1, . . . , ân] be the estimates of an algorithm C solving the frequency
estimation problem. Define the expected error of C as

∑n
i=1 |âi − ai |ai . Then,

1. The expected error of a CM Sketch of width k and depth b/k is

O
( k ln n

b
ln

k+2
k−1

kn
b

)
.

2. The expected error of a Learned CM sketch with bu unique buckets reserved
for heavy hitters and b − bu buckets used by a CM sketch of width k and depth
(b − bu)/k is

O
( 1

b − bu
ln2 n

bu

)
,

assuming a heavy hitter classifier with perfect accuracy.

Fig. 12 A Learned CM sketch
uses an ML-oracle to classify
items with large counts,
called “heavy hitters”, and
reserves for them unique exact
counters.
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In the network traffic scenario we mentioned earlier, the Learned CM sketch
reduced the estimation error by 32% compared to CM sketch with a space of 0.5 MB
and by 42% with a space of 1 MB. However, the inference time was 2.8 µs per item
on a GPU, while CM sketches on CPU were shown to be four orders of magnitude
faster [8].

5.2 ML-oracle estimating heavy hitters’ counts

A different approach proposed in [37] uses an ML model both to classify heavy
hitters and to predict the counts of the heavy hitters while maintaining the one-sided
error guarantee of CM sketch. The construction algorithm takes a training set (X,Y )
of items X and corresponding counts Y , sorted in ascending order by Y . It sets a
boundary P = Y [p] so that the first p counts ofY have an overall sum less than a given
fraction t ∈ (0,1) of the total, i.e.

∑p
i=1 Y [i] ≤ t‖Y ‖1. Then, the algorithm modifies

the training set by increasing the distance between each count in Y and the boundary
P by an offset proportional to ε ‖Y ‖1, which is the upper bound on the error of a CM
sketch. Finally, an ML model f is trained on (X,Y ) until (i) it does not misclassify
heavy-hitters, i.e. items with a count greater than P; and (ii) it overestimates the
count of heavy hitters within some desired accuracy. Once the training is finished,
training items i satisfying f (i) < P are stored in a traditional CM sketch. At query
time, the count for an item x is estimated as f (x) when f (x) ≥ P, and it is estimated
by the CM sketch otherwise.

The following theorem illustrates that, under certain assumptions, the Learned
CM sketch has an upper error bound no worse than a traditional CM sketch.

Theorem 7 ([37]) The Learned Count-Min sketch with a threshold t ∈ (0,1) and a
backup Count-Min sketch with parameters (ε/t, δ) can return the accuracy guarantee
no worse than that provided by a standard Count-Min sketch with parameters (ε, δ),
on the assumption that the items for testing the model share the same distribution
with the query items, and the guarantee of the model works not only on the test set
but also on the query items.

Using a 3-layer neural network oracle with 20 hidden units, this Learned CM
sketch compared to a CM sketch reduced the mean squared estimation error by
about 92% on normally-distributed counts and by 73% on Zipf-distributed counts.

Authors discuss a variant called Learned Augmented Sketch that stores the counts
of the top-k items into exact counters, estimates the (remaining) heavy-hitters with
f , and uses the CM sketch otherwise.

Discussion. To conclude this section, we want to stress the remarks of Section 4,
which apply to this problem too. That is, one should be aware that the Learned CM
sketch could not be as robust as the traditional version if either the query distribution
or the input stream distribution changes over time with respect to the training data.
On the other hand, if these conditions hold and more efficient implementations are
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made available, the practical advantages of a Learned CM sketch should be taken
into consideration.

6 Conclusions

This is a field still in its infancy that needs a lot of study and experiments to provide
a formal framework and practical support to its preliminary, successfully promising
achievements. We refer the readers to the papers in the following bibliography for
a complete list of open problems, and we content ourselves here to mention that it
is crucial to check also the impact of ML-based solutions in real software and to
experiment with their combination with compact data structures [27], possibly in
automatic engines [17].
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